How fast is WebAssembly?

Arne Vogel
arne.vogel@tu-bs.de
University of Technology Braunschweig
Institute of Operating Systems and Computer Networks
Seminar: WebAssembly, the standard for the future?
Brunswick, Germany

Abstract

WebAssembly was introduced to be an efficient and fast
alternative to JavaScript. The goal is to achieve execution
times within the range of native code performance. But can
WebAssembly achieve this goal? The original paper which
introduced WebAssembly already tries to answer this ques-
tion. But doubts have been expressed about the validity of
the benchmarks used for this purpose.

This paper explores how fast WebAssembly is compared
to native code. For this purpose new benchmarks of Web-
Assembly and native code are evaluated. Furthermore, the
reasons for WebAssembly’s slow execution speed are ex-
amined, and whether these reasons can be alleviated in the
future is discussed.

1 Introduction

WebAssembly strives to provide execution speeds close to
native execution speed [12]. But can WebAssembly meet
these self-imposed reqirements? In this paper we examine
how fast WebAssembly is.

In the paper introducing WebAssembly [15], a bench-
mark for WebAssembly has already been performed. For this
benchmark the authors used PolybenchC [15]. PolybenchC
is a benchmark suite with various mathematical procedures.
However, according to Jangda et al. these benchmarks are
not representative for the actual execution of WebAssembly.
The use cases for which WebAssembly was introduced go far
beyond mathematical procedures [11]. These include among
others image / video editing, live video augmentation, CAD
applications and developer tooling (editors, compilers, de-
buggers, ...etc). Since these use cases are only a small part of
the PolybenchC benchmark, the expressiveness of the bench-
mark about the execution speeds of WebAssembly programs
remains low. For this reason, Jangda et al. use the SPEC CPU
benchmark suite which better matches the use cases of Web-
Assembly. To run these benchmarks the authors additionally
developed Browsix-WASM a tool to simulate Linux system
calls in the browser.

The structure of the paper is as follows. In the Section 2
background information necessary for the understanding
of this paper is provided. In Sections 3 and 4 the newly
created tools by Jandga et al. are presented. Furthermore, the
performance of WebAssembly is examined in Section 5, the
current state of performance is analysed and the reasons for

this state are examined. Finally, related works are presented
in section 6 and a conclusion is made in Section 7.

2 Background

In this section background information for the understanding
of the paper is provided.

Browsix provides Unix interfaces like processes, sockets,
pipes, system calls and a shared file system to JavaScript,
asm.js or WebAssembly running in the browser [2, 19]. This
is achieved by mapping low level Unix primitive to existing
browser APIs. In this way different Unix functionalities can
be utilized by JavaScript in the browser. This includes pro-
cesses (e.g. fork, spawn, exec, and wait4) and signals between
processes (e.g. kill) [19].

The SPEC CPU benchmark suite is a benchmark designed
to compare workloads on different computer systems [10].
The goal of the SPEC CPU Benchmarks is to test the CPU in
such a way as it were stressed from real applications. For this
reason, the usage of this benchmark is widespread, as for
instance the developers of Native Client used this benchmark
to test Native Client [22].

PolyBenchC is the C version of the PolyBench benchmarks.
Polybench is a collection of benchmarks containing mathe-
matical operations like matrix multiplication or LU decom-
position [8].

asm.js is a subset of the JavaScript language. The intention is
that asm.js has a better performance than regular JavaScript.
This is important because asm.js is used as a compilation
target for languages like C. This allows the development of
web applications with languages other than JavaScript. Based
on asm.js the binary format WebAssembly was developed.

2.1 WebAssembly

Here we provide some detailed information about WebAssembly

required for the understanding of this paper.

WebAssembly is a byte code format for execution in
web browsers [15]. The first minimal viable product of Web-
Assembly was released in 2017. The goal of WebAssembly is
to deliver execution times faster than JavaScript and as close
to native code as possible [12]. WebAssembly is not intended
to replace JavaScript but to support JavaScript in CPU in-
tensive applications. As an open standard developed by the
W3C WebAssembly Working Group [13], WebAssembly is
available in all popular browsers.



launch c
Browsix-SPEC Harness

[} WebWorker

1

Main JS Context

launch main

= 401.bzip2 Harness.js

perf record

specinvoke

Browsix-Wasm Browsix-Wasm

v
download benchmark results userspace kernel

launch Linux perf after JIT compilation
stop perf when benchmark exits

Figure 1. Browsix-SPEC workflow overview [16].

The memory of WebAssembly is stored in an array of bytes.
This memory must be protected from access outside the
array. For this reason, all memory accesses are dynamically
checked at runtime. Access outside the array result in a trap.
This memory is disjoint from code space. For this reason,
no additional memory checks need to be made on memory
accesses or storage.

To enable dynamic linking of modules function pointers
can be emulated with the instruction call_indirect. This is
done via a runtime index in a global table of functions
defined by the module. The function type is checked dynam-
ically at runtime to ensure it matches the expected function
type supplied by call_indirect. This check is needed to guar-
antee the integrity of the execution environment.

3 SPEC Benchmark

In this section we describe the additions developed by Jangda
et al. for the SPEC benchmark.

To investigate the speed of WebAssembly, Jangda et al. uti-
lize the SPEC CPU benchmarks. They chose this benchmark
suite because it covers the diverse use cases of WebAssembly.

Jangda et al. have developed Browsix-SPEC Harness for
the automatic execution of the SPEC Benchmark in the
browser. The behaviour of Browsix-SPEC can be seen in
Figure 1. The Browsix-SPEC Harness starts a browser with
the Browsix-WASM kernel, Browsix-WASM userspace and
Harness.js. Harness.js is used to load the WebAssembly mod-
ule to be tested. The Browsix-WASM kernel runs beside the
WebAssembly module and is responsible for processing the
system calls of this application. After the JIT compilation of
the WebAssembly module the Linux tool perfis launched
for the benchmark. Perf then starts the main and records
the performance during execution. The tool perf is a util-
ity that can use performance counters to analyse the perfor-
mance of programs. Performance counters are special CPU
registers which are dedicated to store a number of hardware-
related activities. The Browsix-SPEC benchmark collected
the following performance counters: all-loads-retired,
all-stores-retired, branches-retired,
conditional-branches, cpu-cycles,
instructions-retired, L1-icache-load-misses.

Arne Vogel

4 Browsix-WASM

The SPEC benchmarks require system calls. Jangda et al.
could not use Browsix for this because Browsix only sup-
ports JavaScript programs. For this reason, Jangda et al. have
developed Browsix-WASM as an extension of Browsix. In
this section the structure and function of Browsix-WASM
are presented.

Browsix was developed in JavaScript [19]. As Jangda et
al. wanted to investigate the performance of WebAssembly,
they could not use Browsix for this reason. For this reason,
they developed Browsix-WASM, an extension of Browsix.
Browsix-WASM offers the same Unix interfaces as Browsix,
but is implemented in WebAssembly.

Browsix uses SharedArrayBuffer for communication be-
tween the process and the kernel. WebAssembly does not
support SharedArrayBuffers. For this reason Browsix-WASM
an extension to Browsix was developed by Jangda et at. [16].
The extension provides system calls for WebAssembly ap-
plications with a low overhead. Programs compiled with
Browsix-WASM generate a JavaScript module in which the
generated WebAssembly binary is embedded. Additionally,
the Browsix-WASM runtime is included in the JavaScript
module. The Browsix-WASM runtime provides the libmusl C
library which makes the standard C/POSIX library avaliable
to WebAssembly programs [5, 16]. Since WebAssembly does
not support the SharedMemoryBuffer required by Browsix,
it must be supported by Browsix-WASM. The simple solution
to copy the memory of the WebAssembly application into a
SharedMemoryBuffer results in a high copy overhead and
2x memory usage. For this reason, the authors use a 64mb
auxiliary buffer for each process. For a system call, only the
required memory is copied into this auxiliary buffer. If more
than 64mb is required, the system call is divided into several
calls. After the system call has been processed, the memory
is copied back into the WebAssembly memory. This process
can be seen in Figure 2. Jandga et al. showed that this solution
provides a low copy overhead and low memory requirements.
In contrast to the naive approach with a high copy overhead
and 2x memory usage this approach uses only the resources
that are actually needed for the operations. To make sure
that the performance of WebAssembly is actually measured
and that Browsix-WASM does not cause slower execution
performance, Jangda et al. additionally have measured the
overhead of Browsix-WASM. For this they instrumented the
system calls and looked at how much time is spent during the
execution of benchmarks in Browsix-WASM. It was found
that for 14 out of 15 benchmarks the Browsix-WASM over-
head was below 0.5%. The maximum overhead was 1.2% and
the average overhead was only 0.2%.



How fast is WebAssembly?

WebAssembly Process ‘ Browsix-WASM Kernel
WebAssembly memory 64MB SharedArrayBuffer |

" copy referenced data

: 7 N\ :
. o - ) P
Webassembly the(a's"s}‘ WebAssembly memory ‘ | a;ﬁ'f"':'y @teﬂ.té.\ Srowsi WASM
Process ‘—f WebAssembly memory 1 aul":yfi:rry < —| Kemel
: AN I : —
: N4 :

copy response o

Figure 2. Browsix-WASM converting WebAssembly mem-
ory to a SharedMemoryBuffer as required by Browsix [16].

5 Performance Analysis

In this section we look at the performance of WebAssembly.
We look at the speed in relation to native code and in relation
to JavaScript code.

5.1 Benchmarks

Various benchmarks have been performed to determine the
speed of WebAssembly. In the paper introducing WebAssembly,
Haas et al. already measured the execution performance of
WebAssembly. For this purpose they used PolyBenchC. With
these benchmarks they found that nearly all tests stayed
under 2x the performance of native code and 7 tests could
even achieve 1.1x the performance of native code.

Jangda et al. were able to reproduce the results from Haas
et al. in their work. However, Jangda et al. also pointed out
the weaknesses of PolyBenchC for evaluating WebAssembly.
According to their argumentation, PolyBenchC is not rep-
resentative for the WebAssembly intended use cases. They
argue that PolyBenchC as a mathematical benchmark suite
reflects only a small amount of the use cases of WebAssembly.
For this reason, Jangda et al. have adapted and performed
the SPEC CPU benchmark for WebAssembly. The results
of the benchmark can be seen in Figure 3. They discovered
that WebAssembly code is on average 1.45x slower in Firefox
and 1.55x slower in Chrome compared to native code. The
highest slowdown was 2.08x in Firefox and 2.5x in Chrome.

In the following we will take a closer look at the SPEC CPU
benchmark and examine how the results can be explained.

5.2 Measured performance

With the help of the performance counters as described in
Section 3 Jandga et al. were able to analyse precisely the
behaviour of the compiled WebAssembly code. The outcomes
can be observed in Figure 5.

all-stores-retired,all-loads-retired: These counters
indicate how high the register pressure is. Retired instruc-
tions are instructions that have been completely executed [4].
In the speculative execution of instructions, more instruc-
tions are executed than the control flow requires. As soon as
it is certain that an instruction is indeed needed, it becomes

35 Google Chrome-Mozilla Firefox

-
o

(native = 1.0)

1.0

Relative execution time

SPEC CPU Benchmarks

Figure 3. Results of the Browsix-SPEC Benchmarks [16].
Execution times are down relative to the execution times
archieved by native code.

"retired". Load and store instructions are involved when read-
ing and writing to registers. For this reason, the number of
retired load and store instructions is an indicator of how high
the register pressure is. A higher number of load and store
instructions is an indicator of a greater register pressure.

In Chrome there were 2.02x and in Firefox 1.92x more load
instructions were retired by WebAssembly code in compari-
son to native code. Furthermore, in Chrome there were 2.30x
and in Firefox 2.16x more store instructions being retired by
WebAssembly code in contrast to native code.
branches-retired, conditional-branches: Just as more
retired load and store instructions indicate a higher register
pressure, the number of retired branch instructions can be
used as an indicator for more branches in the generated code.

In Chrome there were 1.75x and in Firefox 1.65x more
branch instructions were retired by WebAssembly code in
comparison to native code. Furthermore, in Chrome there
were 1.65x and in Firefox 1.62x more conditional branches
in WebAssembly code in contrast to native code.
instructions-retired, cpu-cycles, L1-icache-load-

misses: With L1 instruction load cache misses, more CPU
cycles must be used to wait for the requested data. For this
reason, L1 instruction cache misses together with the total
number of instructions that are retired and the number of
CPU cycles required for execution are an indicator of an
increased code size.

In Chrome there were 1.80x and in Firefox 1.75x more
branch instructions were retired by WebAssembly code in
comparison to native code. Furthermore, in Chrome there
were 1.53x and in Firefox 1.38x more cpu cycles in Web-
Assembly code in contrast to native code. In addition, in



Chrome there were 2.83x and in Firefox 2.04x more L1 in-
struction cache load misses in WebAssembly code in contrast
to native code.

5.3 Slow Performance

As it was shown in the benchmarks, the execution speed of
WebAssembly is not yet at the same level as the execution
speed of native code. Although WebAssembly is faster than
JavaScript, it lags behind native code. In this subchapter the
different reasons for this are presented which Jangda et al.
identified for it.

5.3.1 Increased Register Pressure

Jangda et al. identify increased register pressure as one of
the causes for slower execution times compared to native
code. Register pressure as defined by Braun et al. denotes
“"the number of simultaneously live variables at an instruc-
tion" [14]. At a high register pressure, variables must be
transferred from registers to the memory. This results in
slower variable access times for these variables and thus a
slower overall execution time. The reasons for the increased
register pressures in WebAssembly are multifaceted:
Register allocation algorithm Chrome and Firefox both
use a linear scan register allocator while Clang uses a greedy
graph-coloring register allocator [6, 21]. The results of the
algorithms can differ in the number of registers used for
the code. In their work, Jangda et al. showed that for an
example matrix multiplication program Clang compiled a
program with only 10 registers while Chrome needed 12
registers for the same program. Firefox and Chrome use
these algorithms for their fast performance [16]. While fast
compilations are important for browsers in order to provide
a smooth user experience, native compilers can spend more
time on optimizations.

Reduced register number: both Chrome and Firefox have
registers that are not available for WebAssembly. These reg-
isters are used for browser internal variables. For example,
Chrome uses a register to point to an array of GC roots [9],
while Firefox uses a register to point to the start of heap
memory [1]. Thus, the WebAssembly compiler has fewer
registers available than a compiler for native code. For this
reason, WebAssembly code executed in browsers has fewer
registers available for allocations than native code. This ad-
ditionally increases the demand on the register allocation
algorithms used. Since they have fewer registers to work
with, the probability of register spilling is higher.

5.3.2 Extra Branch Instructions

WebAssembly has to do checks before certain instructions
for security reasons. These checks are the verification that
the stack does not overflow, checks that indirect function
calls are valid, and tests that prevent register spilling in loops.
All these checks result in a higher number of branches and
conditional branches.

Arne Vogel

.Google Chrome

Samples relative to native
(native is 1.0)

o

SPEt CPU Benchmarks

Figure 4. Number of instructions executed by WebAssembly
compared to the native code baseline [16].

Performance Counter Chrome | Firefox
all-loads-retired 2.02x 1.92x
all-stores-retired 2.30x 2.16x
branch-instructions-retired 1.75x 1.65x
conditional-branches 1.65x% 1.62x
instructions-retired 1.80x 1.75%
cpu-cycles 1.54x 1.38x
Ll-icache-load-misses 2.83 % 2.04 x

Figure 5. Measurements of the performance counters com-
paring WebAssembly to a native code baseline [16].

The current stack size is stored in a global variable in
both Firefox and Chrome and increased with each function
call. For this reason, the stack size must be compared with
the maximum stack size allowed by the developer for each
function call. This results in both a larger code size and more
branches.

For indirect calls, WebAssembly must dynamically check
at runtime whether the specified function is valid and whether
the types match. These checks are made using the function
table. All these checks lead to a larger code size and more
branches.

5.3.3 Increased Code Size

For the reasons set out in 5.3.2 WebAssembly code generated
in browsers has a larger code size compared to native code.
The larger code size can also be recognized in the number
of instructions that are executed. This effect can be seen
in Figure 4. On average, code generated for WebAssembly
will require 1.80x more instructions for the same program
as code generated by a native compiler.



How fast is WebAssembly?

5.4 Illustration of the problems on an example

Jangda et al. have illustrated the problems of the WebAssembly
compilers using a small example program snippet. The snip-
pet was a matrix multiplication of two matrices. They com-
piled this once with Clang and once with Chromes Web-
Assembly compiler. Afterwards the two different outputs
were examined.

Firstly, this example demonstrates how not all x86 ad-
dressing modes are used by the WebAssembly compiler. This
can be seen in Figure 6 and Figure 7. It can be observed
how Clang performs the addition in one operation while
WebAssembly has to perform two operations to achieve this.

add [rdi + rcx*4 + 4*%NJ], ebx

Figure 6. Addition in Clang

add ecx,ri15d
mov [rbx+rdxx1],ecx

Figure 7. Addition in WebAssembly

Furthermore, Jangda et al. observed how the register pres-
sure has already led to problems in the relatively small snip-
pet. The code created by the WebAssembly compiler contains
3 register spills, although it uses 3 more registers in total.
This illustrates the weakness of the linear scan register allo-
cator used by the Chrome WebAssembly compiler. Finally,
the code example has made clear how the WebAssembly adds
extra jump instructions. Due to additional memory loads at
the beginning of loops the WebAssembly compiler needs
extra jumps. These jumps skip the memory loads in the first
iteration.

As a result of all these problems the WebAssembly code
size is much greater compared to the size of native code.
While the native code needs 28 lines for the matrix multipli-
cation, the WebAssembly compiler needs 46.

5.5 Possible Improvements

Jangda et at. also considered whether the current reasons
for the slower execution time can be fixed or whether they
are the result of the design of WebAssembly. They come to
the conclusion that the use of the current registers allocators
and code generators offers room for improvement compared
to the optimizations of native compilers. However, because
WebAssembly in browsers requires less compilation time for
a good user experience, these optimizations are difficult to
implement at initial compilation without affecting the user
experience. Therefore, Jangda et al. suggest adopting opti-
mizations from other JIT compilers like hot code operation.

Four other problems, namely stackoverflow checks, indi-
rect call checks, reserved registers and the resulting increased
code size, are problems resulting from the design constrains

of WebAssembly. The cause of these problems lies in the
design of WebAssembly and the resource dependency on
the browser. For this reason, these cannot be solved with
improved algorithms or other alternative strategies.

5.6 Continuous improvements

In spite of the unsolvable problems, the performance of Web-
Assembly has improved since its creation. The first release
of WebAssembly was only a minimum viable product [7].
Therefore, not all possibilities for improving execution time
are likely to be available yet. Since WebAssembly only exists
since 2017 and it was released as minimum viable product
there are still many areas in which WebAssembly has ar-
eas for optimization [7]. For example, fixed-width SIMD
and threads are planned as future features [3]. For this rea-
son, further improvements in the execution speed can be
expected.

The fact that the speed of WebAssembly is continuously
increasing can be observed in Figure 8. It shows the rela-
tive execution speed of WebAssembly compared to native
code. Over time, the number of WebAssembly PolyBenchC
benchmarks running within 1.1x of the speed of native code
gradually increases. While in 2017 there were only seven
benchmarks within 1.1x speed, in 2019 the number has al-
most doubled to 13.

These figures indicate that there is continuous work on im-
provements for WebAssembly and that it is likely that further
improvements can be anticipated in the future. As discussed
in 5.5, there are still some adjustments where further im-
provements can be found. So it is unlikely that the optimum
has already been reached at this point. Research around Na-
tive Client (NaCl) and PortableNative Client (PNaCl) has
found lower limits between 5% and 10% performance reduc-
tion for code with dynamic security safeguards as found in
WebAssembly [18, 20, 22]. Since these works were not mea-
suring the performance in the browser and since browsers
are reducing the performance further, e.g. with reserved reg-
isters, the lower limit of the performance of WebAssembly in
browsers will probably be higher than found in those works.

5.7 WebAssembly vs asm.js

Additionally, Jangda et al. investigated whether WebAssembly
is faster than asm.js. For the investigation, the authors have
made additional changes to Browsix-WASM to support code
compiled to asm.js.

WebAssembly is faster than asm.js in all tested bench-
marks. The results of the comparison can be seen in Figure 9.
In all benchmarks, the performance of WebAssembly was
better than the performance of the same programs compiled
to asm.js. They revealed that WebAssembly is 1.54x faster in
Chrome and 1.39x faster in Firefox compared to asm.js. Haas
et al. [15] have found similar results using the PolyBenchC
benchmark with a mean speed up of 1.3x from WebAssembly



— PLDI 2017 - -~ April 2018 = = This paper

@ 25)
et
©
€
< 20|
c
o
o
O 15
<
[S]
b
m 10
>
[e]
o
5 5
S

0 -

Il Il
‘;I\AQ/ ;0\\@ @?/ ;&\AQ/
<& R <& <&
3 J 3 3
o N B a2
L L L

Performance relative to native

Figure 8. Number of PolyBenchC benchmarks performing
within x of native [16]. The number of benchmarks within
1.1x and 1.5x of native code execution times increases with
time.

w
o
T

Google Chrcme. Mozilla Firefox

= 2 n
o o @

Relative execution time
(WebAssembly = 1.0)
5

SPEC CPU Benchmarks

Figure 9. Comparison of the execution time of asm.js com-
pared to the WebAssembly baseline in both Firefox and
Chrome [16]. In all benchmarks, the performance of Web-
Assembly was better than the performance of the same pro-
grams compiled to asm.js.

compared to asm.js. This shows that WebAssembly is con-
sistently faster than JavaScript and thus meets one of the
self-imposed design criteria.

6 Related Work

One of the predecessors of WebAssembly was Native Client
(NaCl) from Google [22]. Just like WebAssembly, certain
security precautions had to be taken for NaCl in order to
ensure secure execution on end devices. When running the
SPEC2000 CPU benchmarks as Linux binary compiled with
the NaCl compiler Yee et al. have experienced an on average

Arne Vogel

a slower performance of 5% compared to binaries compiled
with the gcc compiler.

Sehr et al. have investigated the software fault isolation
(SFI) of NaCl [20]. They found that SFI decrease execution
speed between 5%-7% on both ARM and x86-64 architectures.
Similar to Jangda et al. they found a bigger code size and
cache pressure in code with SFL

In a technical report from 2015, Lopez et al. examined
the performance of PNaCl compared to other web technolo-
gies [18]. In the paper, the authors examined among other
things the Ostrich benchmark suite [17] for both native code
and PNaCl code. The Ostrick benchmark suite contains sev-
eral numerical algorithms and must therefore be interpreted
with caution in the same respect as the PolyBenchC bench-
marks. In this benchmark PNaCl code was able to compete
with native code with a geometric mean slowdown of around
9%.

7 Conclusion

In this paper we have examined the execution speed of
WebAssembly. For this we examined new benchmarks re-
sults which better cover the self-imposed use cases of Web-
Assembly. Though WebAssembly is faster than JavaScript,
it is still lagging well behind the performance of native
code. Although WebAssembly is on average 1.3x faster than
JavaScript, with an average 1.55x slower execution time
in Chrome and 1.45x for Firefox, the performance of Web-
Assembly is still below the speed that can be achieved with
native code. We have investigated the reasons for the discrep-
ancy between the execution time of WebAssembly and native
code and identified several factors that can be attributed to
this discrepancy. We identified the factors of increased code
size, increased register pressure and increased number of
branch instructions in comparison between WebAssembly
and native code. Finally, we investigated if these reasons can
be fixed in the future or if they are inherent to the architec-
ture of WebAssembly.

References

[1] [n.d.]. Assembler-x64.h. https://hg.mozilla.org/mozilla-central/file/
tip/js/src/jit/x64/Assembler-x64.h. Accessed: 12-01-2020.

[2] [n.d.]. Browsix: Unix in your browser tab. https://browsix.org/. Ac-
cessed: 2019-11-15.

[3] [n.d.]. Features to add after the MVP. https://webassembly.org/docs/
future-features/. Accessed: 2019-12-18.

[4] [n.d.]. Instructions Retired Event. https://software.intel.com/en-us/
vtune-help-instructions-retired-event. Accessed: 2019-12-15.

[5] [n.d.]. Introduction to musl. https://www.musl-libc.org/intro.html.
Accessed: 2019-11-20.

[6] [n.d.]. LLVM Reference Manual. https://llvm.org/docs/CodeGenerator.
html. Accessed: 2019-11-30.

[7] [n.d.]. Minimum Viable Product. https://webassembly.org/docs/mvp/.
Accessed: 2019-11-30.

[8] [n.d.]. PolyBench/C the Polyhedral Benchmark suite. http://web.cse.
ohio-state.edu/~pouchet.2/software/polybench/. Accessed: 2019-11-
15.


https://hg.mozilla.org/mozilla-central/file/tip/js/src/jit/x64/Assembler-x64.h
https://hg.mozilla.org/mozilla-central/file/tip/js/src/jit/x64/Assembler-x64.h
https://browsix.org/
https://webassembly.org/docs/future-features/
https://webassembly.org/docs/future-features/
https://software.intel.com/en-us/vtune-help-instructions-retired-event
https://software.intel.com/en-us/vtune-help-instructions-retired-event
https://www.musl-libc.org/intro.html
https://llvm.org/docs/CodeGenerator.html
https://llvm.org/docs/CodeGenerator.html
https://webassembly.org/docs/mvp/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/

How fast is WebAssembly?

[9] [n.d.]. register-x64.h. https://github.com/v8/v8/blob/7.4.1/src/x64/
register-x64.h. Accessed: 12-01-2020.

[10] [n.d.]. SPEC Benchmarks. https://www.spec.org/benchmarks.html.
Accessed: 2019-11-14.

[11] [n.d.]. Use Cases. https://webassembly.org/docs/use-cases/. Accessed:
2019-11-26.

[12] [n.d.]. WebAssembly. https://webassembly.org/. Accessed: 2019-11-14.

[13] [n.d.]. WebAssembly Working Group. https://www.w3.org/wasm/.
Accessed: 2019-12-15.

[14] Matthias Braun and Sebastian Hack. 2009. Register spilling and live-
range splitting for SSA-form programs. In International Conference on
Compiler Construction. Springer, 174-189.

[15] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael

Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017.

Bringing the web up to speed with WebAssembly. In ACM SIGPLAN

Notices, Vol. 52. ACM, 185-200.

Abhinav Jangda, Bobby Powers, Emery D Berger, and Arjun Guha.

2019. Not so fast: Analyzing the Performance of WebAssembly

vs. native code. In 2019 {USENIX} Annual Technical Conference

({USENIX}{ATC} 19). 107-120.

[16

—

[17]

(18]

[19]

[20]

[21]

[22]

Khan, Faiz and Foley-Bourgon, Vincent and Kathrotia, Sujay and
Lavoie, Erick. [n.d.]. Ostrich Benchmark Suite. https://github.com/
Sable/Ostrich

Lei Lopez. 2015. Halophile: Comparing PNacl to Other Web Technolo-
gies. (2015).

Bobby Powers, John Vilk, and Emery D Berger. 2017. Browsix: Bridging
the gap between Unix and the browser. ACM SIGOPS Operating Systems
Review 51, 2 (2017), 253-266.

David Sehr, Robert Muth, Cliff L Biffle, Victor Khimenko, Egor Pasko,
Bennet Yee, Karl Schimpf, and Brad Chen. 2010. Adapting software
fault isolation to contemporary CPU architectures. (2010).

Christian Wimmer and Michael Franz. 2010. Linear scan register
allocation on SSA form. In Proceedings of the 8th annual IEEE/ACM
international symposium on Code generation and optimization. ACM,
170-179.

Bennet Yee, David Sehr, Gregory Dardyk, ] Bradley Chen, Robert Muth,
Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar.
2009. Native client: A sandbox for portable, untrusted x86 native code.
In 2009 30th IEEE Symposium on Security and Privacy. IEEE, 79-93.


https://github.com/v8/v8/blob/7.4.1/src/x64/register-x64.h
https://github.com/v8/v8/blob/7.4.1/src/x64/register-x64.h
https://www.spec.org/benchmarks.html
https://webassembly.org/docs/use-cases/
https://webassembly.org/
https://www.w3.org/wasm/
https://github.com/Sable/Ostrich
https://github.com/Sable/Ostrich

	Abstract
	1 Introduction
	2 Background
	2.1 WebAssembly

	3 SPEC Benchmark
	4 Browsix-WASM
	5 Performance Analysis
	5.1 Benchmarks
	5.2 Measured performance
	5.3 Slow Performance
	5.4 Illustration of the problems on an example
	5.5 Possible Improvements
	5.6 Continuous improvements
	5.7 WebAssembly vs asm.js

	6 Related Work
	7 Conclusion
	References

